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SUMMARY

We describe a chemical method to label and purify 4-thiouridine (s4U)-containing RNA. We 

demonstrate that methanethiosulfonate (MTS) reagents form disulfide bonds with s4U more 

efficiently than the commonly used HPDP-biotin, leading to higher yields and less biased 

enrichment. This increase in efficiency allowed us to use s4U-labeling to study global microRNA 

(miRNA) turnover in proliferating cultured human cells without perturbing global miRNA levels 

or the miRNA processing machinery. This improved chemistry will enhance methods that depend 

on tracking different populations of RNA, such as 4-thiouridine-tagging to study tissue-specific 

transcription and dynamic transcriptome analysis (DTA) to study RNA turnover.

INTRODUCTION

RNA is continuously transcribed and degraded in a tightly regulated and transcript-specific 

manner. The dynamics of different RNA populations can be studied by targeted 

incorporation of non-canonical nucleosides. These nucleosides can provide a chemical 

handle for labeling and enriching RNA subpopulations. The labeling of RNA employs 5-

bromouridine (5-BrU; Tani et al., 2012), 5-ethynyluridine (5-EU; Jao and Salic, 2008), and 

4-thiouridine (TU or s4U; Cleary et al., 2005; Miller et al., 2009), which provide different 

vehicles for antibody detection, cycloaddition reactions, and thiol-specific reactivity, 

respectively. 4-thiouridine holds the advantage that labeling is covalent, unlike the antibody 
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detection of 5-BrU, and also that the disulfide bond is reversible, unlike the click chemistry 

used to label 5-EU (reviewed in(Tani and Akimitsu, 2012).

Methods to enrich s4U-incorporated RNA (s4U-RNA) initially relied on organomercurial 

affinity matrices (Melvin et al., 1978), but the use of s4U in metabolic labeling expanded 

after HPDP-biotin, a 2-pyridylthio-activated disulfide of biotin, was developed as a practical 

means to biotinylate s4U-RNA using reversible disulfide chemistry, followed by enrichment 

using a streptavidin matrix (Cleary et al., 2005; Dölken et al., 2008). The s4U-RNAs can be 

eluted by reduction of the disulfide linkage and subsequently analyzed by microarray, 

qPCR, or deep sequencing. This modified protocol sparked a surge in techniques that use 

s4U metabolic labeling. For example, half-lives of specific RNAs can be measured using 

s4U metabolic labeling by quantifying the ratio of pre-existing (flow through) to newly 

transcribed (elution) RNA (Dölken et al., 2008). This approach has been extended to 

genome-wide analysis using high-throughput sequencing (s4U-Seq; Rabani et al., 2011). 

Combining s4U metabolic labeling with dynamic kinetic modeling has led to the 

development of dynamic transcriptome analysis (DTA; Miller et al., 2011), and comparative 

dynamic transcriptome analysis (cDTA) when using S. pombe standards for normalization, 

which allows the determination of absolute rates of mRNA synthesis and decay (Sun et al., 

2012). Reversible transcriptional inhibition has been combined with s4U metabolic labeling 

to measure transcriptional elongation rates (Fuchs et al., 2014). Recently, s4U metabolic 

labeling has been used with approach to equilibrium kinetics to determine absolute RNA 

degradation and synthesis rates based on multiple time points after s4U labeling (RATE-seq; 

Neymotin et al., 2014). In addition to these methods for analyzing RNA turnover, the 

enrichment of s4U-RNA can also be used to determine cell-type specific transcription (4-

thiouridine tagging), which is particularly helpful for analyzing the transcriptomes of cell 

types that are difficult to isolate by dissection or dissociation methods (Miller et al., 2009).

As the efficient chemical modification of s4U is central to all of these techniques, we tested 

the reactivity of s4U with HPDP-biotin. Here we report that the reaction and corresponding 

enrichment of s4U-RNA with HPDP are inefficient. Therefore, we developed and validated 

chemistry using activated disulfides to label and enrich s4U-RNA. This chemistry increases 

labeling yields and decreases enrichment bias. Due to the increased efficiency of this 

chemistry, we were able to extend s4U-metabolic labeling to the study of microRNAs 

(miRNAs), providing insight into miRNA turnover in proliferating cells without inhibition 

of miRNA processing pathways. Our studies expand the utility of s4U in metabolic labeling 

applications and provide the foundation for clearer insight into cellular RNA dynamics 

through the improvement of all the methods listed above.

DESIGN

We sought chemistry to enrich s4U-RNA that satisfied several considerations. First, the 

chemistry should be efficient, leading to high yields of labeled s4U residues. To maintain the 

advantages of reversible covalent chemistry, we focused on activated disulfide reagents, 

which allow reductive release after enrichment. This labeling chemistry should be rapid, 

minimizing time required for purification and decreasing RNA degradation during handling. 

Finally the chemistry needs to be specific for s4U and should not react with RNA that lacks 
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thiol groups. These improvements would lead to a more robust protocol for s4U-RNA 

isolation. Additionally, optimized chemistry could allow the extension of labeling to small 

RNAs including miRNAs. Smaller RNAs are expected to be particularly sensitive to the 

efficiency of s4U labeling, as they tend to have fewer uridine residues and therefore have 

lower probability of successful labeling. To develop chemistry that meets the above criteria, 

we first used simple chemical systems to determine the reactivity of activated disulfides. We 

studied the specificity of labeling chemistry using synthetic RNA with and without s4U. We 

used metabolic labeling experiments together with RNA-sequencing (RNA-Seq) to test the 

application of this chemistry in the context of complex RNA samples. Finally, we evaluated 

the use of this chemistry to study miRNA turnover, revealing fast- and slow-turnover 

miRNAs in proliferating cells without perturbing miRNA processing pathways.

RESULTS

Optimizing labeling chemistry using free nucleosides

To examine the reactivity of s4U-RNA with HPDP-biotin, we first studied the labeling of 

the s4U nucleoside using liquid chromatography coupled to mass spectrometry (LC-MS; 

Figure 1A, B). We found biotinylation of the s4U nucleoside with HPDP-biotin to be 

inefficient when using buffer conditions that are commonly used in the retrieval of s4U-

RNA (Gregersen et al., 2014). This inefficiency stems from the forward and reverse 

disulfide exchange reactions (Figure 1A). Any disulfide formed with the electron-poor 

pyrimidine ring of s4U results in a more activated product, therefore favoring the reverse 

rather than the forward labeling reaction. For this reason, it is not surprising that HPDP-

biotin is an inefficient reagent for disulfide exchange with s4U. Improving this chemistry 

would expand the utility of s4U, improve the sensitivity of s4U labeling, and reduce bias in 

s4U-RNA enrichment.

Of the numerous activating chemistries used to make asymmetric disulfides (Jeschke, 2013; 

Kenyon and Bruice, 1976), thiosulfates and alkylthiosulfonates are particularly attractive 

(Figure 1C). We found that, in sharp contrast to the slow and inefficient reaction with 

HPDP-biotin, methylthiosulfonate-activated biotin (MTS-biotin) reacts efficiently with s4U, 

leading to >95% conversion to the mixed disulfide within just five minutes (Figure 1D). We 

validated this difference in s4U reactivity between MTS-reagents and 2-pyridylthio-activated 

disulfides using NMR (Figure 1E, Figure S1A–S1C). While only a minority of s4U reacted 

using 2-pyridylthio chemistry (<20%), MTS chemistry led to >95% conversion of s4U to the 

mixed disulfide.

Extending MTS labeling chemistry to s4U-RNA

This MTS-chemistry could be used to specifically fluorescently label s4U-RNA in the 

context of cell extracts (Figure S1D). Furthermore, we found that the use of MTS-biotin 

leads to superior biochemical enrichment of s4U-RNA in comparison to HPDP-biotin 

(compare flow through to eluent in Figure 1F, G) or thiosulfate-biotin (TS-biotin, Figure 

S1E–G). Importantly, MTS- and HPDP-chemistries are specific for enrichment of s4U, as no 

significant enrichment of RNA without s4U occurred in either case (Figure 1F, G, Figure 
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S1H). We therefore conclude that MTS-chemistry provides a specific and highly efficient 

means of detecting and biochemically purifying s4U-RNA.

We next tested the efficacy of MTS-biotin as a reagent to examine newly transcribed RNA 

in HEK293T cells (Figure 2A). We treated cells with s4U-supplemented media and reacted 

the isolated RNA with either HPDP-biotin (as described previously by(Gregersen et al., 

2014) or MTS-biotin. Biotinylated RNA was enriched and then analyzed by RNA-

sequencing (RNA-Seq). To compare the RNA-Seq reads across experiments, we used a 

normalization approach developed by Sun et al. (2012) in which the same amount of RNA 

from S. pombe is added to each sample prior to constructing the library for RNA-Seq. 

Consistent with our prior analysis, compared to HPDP-biotin, the use of MTS-biotin led to 

significantly greater normalized coverage of the human transcriptome (Figure 2B, C). This 

enrichment was reproducible across biological replicates (Pearson’s r = 0.92, Figure S2A–

D) and was validated by qPCR (Figure S2E, F). To test the specificity of MTS chemistry, 

we examined MTS-biotin treated RNA from cells that had not been treated with s4U, and 

found substantially fewer normalized reads than with either HPDP-biotin or MTS-biotin 

enriched s4U-RNA (Figure 2B, C). The result from this control experiment validated the 

specificity of MTS-biotin for metabolically labeled s4U-RNA.

Alleviating length bias using MTS-biotin

We next compared the distributions of enriched RNAs using MTS- and HPDP-biotin. 

Purification of s4U-RNA using HPDP-biotin is reported to bias enrichment toward longer 

RNAs that tend to contain increasing numbers of uridines, hereafter referred to as length 

bias (Miller et al., 2011; Miller et al., 2009). This bias was confirmed in our study (Figure 

2D). While this bias can be partially mitigated statistically (Miller et al., 2011; Miller et al., 

2009), more fruitful biochemical enrichment is clearly preferable, especially when 

examining overlapping transcript models of different sizes (e.g., spliced and unspliced, see 

Supplemental Discussion). To examine how MTS chemistry impacted the length bias in 

comparison with other activated disulfides, we used an in vitro transcribed RNA ladder with 

and without s4U to test the relative yields of RNAs with different lengths. This analysis 

confirmed the presence of a length bias, and agrees well with modeling results (Figure S1G), 

demonstrating how MTS chemistry largely alleviates length bias in RNA turnover 

experiments. Indeed, analysis of our RNA-Seq data reveals that MTS-biotin is less prone to 

length bias compared to HPDP-biotin (Figure 2D). For example, long transcripts like 

MALAT1 (8.7 kb) are isolated by HPDP-biotin and MTS-biotin with approximately equal 

efficiency, whereas shorter transcripts like SCYL1 and LTBP3 (2.3 kb and 3.4 kb, 

respectively, when fully spliced) are found at much greater levels in the MTS-biotin 

pulldown (Figure 2E).

Studying miRNA turnover using MTS-chemistry

Given the substantial increase in s4U-RNA yields we observed when using MTS chemistry, 

we hypothesized that this chemistry could extend s4U metabolic labeling to the study of 

miRNAs. The dynamics of miRNA biogenesis and degradation have gained interest because 

disruption of miRNA homeostasis is implicated in many diseases, particularly for miRNAs 

that regulate progression through the cell cycle (Chang and Mendell, 2007). Generally, 
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miRNA turnover has been investigated by blocking transcription or by inhibiting miRNA 

processing, followed by analysis of miRNA stability (Bail et al., 2010; Gantier et al., 2011; 

Guo et al., 2015). These approaches have demonstrated that while many miRNAs remain 

stable for tens of hours, there are also some miRNAs that turn over much more quickly (e.g., 

miR-222). Extending these studies using metabolic labeling would allow the analysis of 

native miRNA levels in a proliferating system (unlike those studies using transcriptional 

block) without perturbing miRNA biogenesis or global miRNA levels (unlike studies where 

miRNA processing is blocked).

To investigate rates of global miRNA turnover, we treated HEK293T cells with s4U for a 

range of times (Figure 3A) and enriched s4U-miRNAs using MTS chemistry, followed by 

deep sequencing. To test whether s4U perturbs miRNA steady-state levels, we examined 

miRNA levels in cells with and without s4U treatment for 22 days, and we found high 

correlations in miRNA levels (Pearson’s r = 0.99, Figure S3A), demonstrating that s4U 

incorporation has minimal impact on miRNA levels. Our findings are consistent with 

previous accounts that s4U causes minimal perturbation of longer transcripts (Gregersen et 

al., 2014; Hafner et al., 2010), and our own data with longer RNAs (Figure S3B). Consistent 

with our previous results and modeling, a positive control miRNA (a s4U-miRNA spike-in 

added to cellular small-RNAs) was enriched when using MTS-biotin, but was not 

significantly enriched with HPDP-biotin (Figure S3D). We next evaluated the s4U-miRNAs 

at different times after initiating s4U treatment. We found miRNAs levels were reproducibly 

enriched from replicate samples (Figure 3C, S3E). Furthermore, miRNA levels in 

neighboring time points were most similar to each other, and those enriched at later time 

points (1 day, 3 day and 6 days) approached the levels observed at steady state (22 days). As 

expected, the steady-state miRNA levels most closely resembled the input miRNAs levels 

(Figure 3C).

To determine which miRNAs turned over most quickly, we analyzed the relative distribution 

of enriched miRNAs at early time points (20 min) versus steady state (6 days or greater; 

Figure 3D). We identified many RNAs whose relative enrichment was significantly different 

from steady state at early time points, and found these miRNAs displayed a consistent trend 

across time (Figure 3E). We expect fast-turnover miRNAs to be over-represented relative to 

the population in early time points, and slow-turnover miRNAs to be under-represented 

(Figure 3B). To evaluate this expectation, we took advantage of established properties of 

miRNA processing (reviewed in(Rüegger and Großhans, 2012; Winter et al., 2009). During 

miRNA biogenesis, one of the two strands from the duplex precursor generally degrades 

rapidly (referred to here as the miR-star) while the other strand is incorporated into the 

RNA-induced silencing complex (RISC) and exhibits higher stability. Therefore, we 

hypothesized that the miR-star sequences would be over-represented at early time points, 

and this hypothesis was verified: of the 52 significantly enriched and depleted miRNAs 

(FDR < 5x10−5), about one third of the fast-turnover miRNAs were miR-star sequences 

(11/30), while none of the stable miRNAs (0/22) were annotated as miR-star sequences. The 

fast-turnover miRNAs we identified include miRNAs that agree with previous results using 

transcriptional blockade (e.g., miR-222; Guo et al, 2015). Other miRNAs were found to be 

slow turnover (e.g., miR-7), and many of these are also in agreement with past studies (Bail 
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et al., 2010; Guo et al., 2015). In general, our results using metabolic labeling of miRNAs 

agree well with results from analysis of degradation after blocking miRNA production (Bail 

et al., 2010; Guo et al., 2015). There are exceptions, however, such as miR-98-5p and 

miR-191-5p, which were identified as fast-turnover miRNAs in our analysis (Figure 3D, E, 

and Figure S3F for qPCR validation; for a full list of fast-turnover non-star miRNAs, see 

Table S2), yet upon transcriptional blockade these miRNAs are stable (Bail et al., 2010; Guo 

et al., 2015). While these results may be due to tissue or cell line differences, it is more 

likely the faster turnover we observed for miR-98-5p and miR-191-5p is due to the cell cycle 

regulation of these miRNAs (Polioudakis et al., 2015; Ting et al., 2013). Turnover in 

response to progression through the cell cycle is masked when using transcriptional 

inhibition, but this turnover is evident using a metabolic labeling approach to study miRNA 

dynamics in dividing cells, underscoring one of the advantages of this improved chemistry.

DISCUSSION

Together, our results demonstrate that MTS-biotin is a specific reagent that can be used to 

efficiently label and enrich s4U-RNA with higher yields and less bias than the commonly 

used HPDP-biotin. The dramatic improvement over existing s4U biotinylation protocols 

renders MTS chemistry useful for studying dynamics of free nucleosides (Figure 1B, D, E), 

synthetic RNAs (Figure 1F, G), E. coli extracts (Figure S1), and s4U-RNA in metabolic 

labeling experiments (Figure 2). In RNA-turnover experiments, for example, the superior 

MTS chemistry alleviates transcript length bias, decreases the amount of starting material 

required, and may allow for the use of lower doses of s4U to avoid potential toxicities that 

some have observed (Burger et al., 2013), but not others (Gregersen et al., 2014; Hafner et 

al., 2010), when metabolically labeling cells. We demonstrate the utility of this MTS 

chemistry using miRNA RATE-seq, which allowed us to identify fast- and slow-turnover 

miRNAs in proliferating cells with flux through the miRNA pathway (Figure 3). This 

advance provides the foundation for more detailed kinetic analyses of miRNA processing 

and turnover. More generally, applying the chemistry described herein should provide a 

superior means to gain insights into RNA dynamics in diverse biological systems.

LIMITATIONS

This manuscript describes improved capture of s4U-RNA, but the enrichment will only be 

successful when the RNA contains sufficient levels of s4U. In metabolic labeling 

experiments, incorporation of s4U into RNA can be controlled by the concentration of s4U 

during cell treatment and the time of s4U exposure. Insufficient s4U incorporation leads to 

low yields and will also favor enrichment of longer transcripts that have more uridine 

residues (and therefore a greater probability of s4U incorporation). For technical 

considerations while preforming s4U-RNA enrichment see Experimental Procedures and the 

Detailed Protocol included in the Supplemental Material.
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EXPERIMENTAL PROCEDURES

Cell lines and s4U metabolic labeling

HEK293T cells were cultured in high glucose DMEM media supplemented with 10% (v/v) 

fetal bovine serum, and 1% (v/v) 2 mM L-glutamine. For labeling of long RNAs, cultured 

cells at 80% confluence were treated with 700 μM s4U for 60 min, washed with PBS, 

trypsinized, and harvested. Cells were resuspended in TRIzol reagent, flash frozen, and 

stored overnight at −80°C. Cell lysates were chloroform extracted once and total RNA was 

purified by the RNeasy mini kit (Qiagen). For miRNA labeling, cultured cells were grown 

for 6 days and split 1:8 on day 3. Cells were grown in the presence of 100 μM s4U for 22 

days, 6 days, 3 days, 1 day, 9 hr, 3 hr, 1 hr, 20 min, or in the absence of s4U. On day 6, all 

cells were harvested using trypsin and resuspended in TRIzol reagent with exogenous s4U-

containing miRNAs (Dharmacon) and one exogenous non-s4U miRNA (IDT). Samples were 

flash frozen, and stored overnight at −80°C. Cell lysates were chloroform extracted once and 

total RNA purified by the miRvana miRNA isolation kit (Life Technologies).

Purification of s4U-labeled RNA

Biotinylation and s4U-RNA enrichment with HPDP-biotin were carried out based on 

protocols adapted from Gregersen et al. and optimized for MTS-biotin. Reactions were 

carried out in a total volume of 250 μL, containing 70 μg total RNA, 10 mM HEPES [pH 

7.5], 1 mM EDTA, and 5 μg MTSEA biotin-XX (Biotium) or 50 μg HPDP-biotin (Pierce) 

freshly dissolved in DMF (final concentration of DMF = 20%). Reactions were incubated at 

room temperature for 2 hr (HPDP) or 30 min (MTS) in the dark. Following biotinylation, 

excess biotin reagents were removed by addition of 1 volume phenol:chloroform (Sigma), 

followed by vigorous mixing for 15 seconds, 2 min incubation at RT, and centrifugation in a 

Phase-Lock-Gel tube (5Prime) at 12,000 x g for 5 min. Supernatant was removed and RNA 

was precipitated with a 1:10 volume (20 uL) of 5 M NaCl and an equal volume of 

isopropanol (200 uL) and centrifuged at 20,000 x g for 20 min. The pellet was washed with 

an equal volume of 75% ethanol. Purified RNA was dissolved in 50 μL RNase-free water 

and denatured at 65°C for 10 min, followed by rapid cooling on ice for 5 min. Biotinylated 

RNA was separated from non-labeled RNA using μMacs Streptavidin Microbeads 

(Miltenyi). Beads (200 μL) were added to each sample and incubated for 15 min at room 

temperature. In the meantime, μColumns were placed in the magnetic field of the μMacs 

separator and were equilibrated with nucleic acid wash buffer supplied with the beads 

(Miltenyi). Reactions were applied to the μColumns and flow-through was collected as the 

pre-existing RNA fraction. μColumns were washed twice with high salt wash buffer (500 μL 

each, 100 mM Tris-HCl [pH 7.4], 10 mM EDTA, 1 M NaCl, and 0.1% Tween-20). s4U-

RNA was eluted from μColumns with 100 μL freshly prepared 100 mM DTT followed by a 

second elution with an additional 100 μL 5 min later. RNA was recovered from the flow-

through and eluent samples using the MinElute Spin columns (Qiagen) according to the 

instructions of the manufacturer. S. pombe total RNA (11 ng, a generous gift from Julien 

Berro) was added to each sample for downstream normalization.
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s4U-Seq library preparation and sequencing

All sequencing libraries were constructed using standard protocols by the Yale Center for 

Genomic Analysis (YCGA) and run on Illumina HiSeq 2500 instruments. For long RNA-

Seq, strand-specific polyA selected RNA-Seq 5 μg of input and RNA collected from flow-

through and eluted fractions. Samples were multiplexed using Illumina bar codes and 

sequenced using paired-end 2 x 75-nt cycles. For small RNA-Seq, 10% input and RNA 

collected from eluted fractions were used for small RNA library preparation and sequenced 

with single-end 75-nt cycles.

Mapping and quantification of s4U-Seq libraries

For long RNA-Seq, sequencing reads were aligned using Tophat2 (version 2.0.12; Bowtie2 

version 2.2.3), to a joint index of the H. sapiens and S. pombe genomes (hg19 and PomBase 

v22) and transcriptomes (GENCODE v19 and Ensembl Fungi v22; Harrow et al., 2012 and 

Kersey et al., 2013, respectively). Alignments and analysis were performed on the Yale 

High Performance Computing clusters. Following this, we used Cufflinks (version 2.2.1; 

Trapnell et al., 2010) to quantify annotated H. sapiens and S. pombe transcripts, using only 

reads that were uniquely mapped (MAPQ > 20) and that aligned with up to two mismatches 

to the reference.

s4U-Seq normalization

To compare transcript levels between samples, we normalized expression values to S. pombe 

spike-ins as follows:

Where FPKMnorm is the normalized FPKM of a human transcript or gene, FPKMraw is the 

original FPKM calculated for the sample of interest, and Snorm is the slope of the linear 

regression line of raw S. pombe gene FPKMs with the normalizing sample on the y-axis and 

the sample of interest on the x-axis (Figure S2B, Table S1). To normalize genomic coverage 

tracks, we used a similar scheme:

Where Coveragenorm and Coverageraw are the normalized and raw read coverages at a given 

genomic position, and Rsample and Rnorm are the numbers of unique reads in the sample of 

interest and the normalizing sample, respectively. The  adjustment factor reflects that 

we are comparing raw reads, instead of FPKMs. We generated stranded genomic coverage 

tracks using IGVTools (version 2.3.32; Thorvaldsdóttir et al., 2013). For all analyses, we 

normalized to the S. pombe spike in the HPDP-biotin sample. We also accounted for the ten-

fold biochemical dilution of the input samples prior to library preparation by multiplying 

normalized values for these samples by ten.
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Assessment of length bias in eluted s4U-Seq RNA

Because incorporation and biotinylation of s4U are not perfectly efficient, especially when 

using HPDP-biotin, it is expected that transcripts with more uridines will be purified at rates 

greater than or equal to those of shorter transcripts. To assess length bias for each reagent, 

we binned transcript isoforms by numbers of uridines present, and compared the fractions of 

total input RNA that were purified between bins using the Wilcoxon rank-sum test. To avoid 

noise from misassignment of reads between isoforms of individual genes, we included only 

the dominant isoforms of genes (>90% of total expression) in all samples included in the 

analysis. We only included transcripts greater than 200-nt, since shorter transcripts were 

biochemically depleted in the library preparation, and removed transcripts with expression 

levels in the bottom quartile of the input sample.

qPCR assays

For qPCR analysis of long RNA, input or enriched RNA was converted into cDNA with 

VILO reverse-transcription kit (Life Technologies). qPCR was carried out on the CFX96 

real-time system (BioRad) with the iTaq Universal SYBR Green Mix. Results from all 

primers used (listed in Table S3) were corrected for amplification efficiency. For miRNA 

analysis, qPCR was performed using TaqMan miRNA assays (Life Technologies) according 

to the instructions of the manufacturer for the following targets: hsa-miR-7, 

UGGAAGACUAGUGAUUUUGUUG; hsa-miR-20a, 

UAAAGUGCUUAUAGUGCAGGUAG; hsa-miR-98, UGAGGUAGUAAGUUGUA 

UUGUU; hsa-miR-99b, CACCCGUAGAACCGACCUUGCG; hsa-miR-191, 

CAACGGAAUC CCAAAAGCAGCUG; hsa-miR-222, 

AGCUACAUCUGGCUACUGGGUCUC; EED004r, CC 

AUUUGUAUGUUCGGCUAACU; and EED095r; CCAUUUCGCUCGGGUGCUAACU.

miRNA RATE-seq s4U RNA enrichment

Biotinylation and s4U-RNA enrichment were carried out as described above (Purification of 

s4U-labeled RNA) with the following modifications. Excess biotinylation reagent was 

removed using a nucleotide cleanup kit (Qiagen). Following enrichment, RNA was 

concentrated by ethanol precipitation and resuspended in 14 μL RNase-free water. After 

enrichment, samples were supplemented with four synthetic miRNA standards (Dharmacon; 

Table S3).

miRNA RATE-seq bioinformatic analysis

To analyze our smRNA RATE-Seq data, we used a hierarchical mapping pipeline 

combining the sRNAbench (Rueda et al., 2014), Bowtie (Langmead et al., 2009), and 

Bowtie2 tools (Langmead and Salzberg, 2011). Before mapping the reads, we removed 

sequencing adapters, using fastx-clipper (http://hannonlab.cshl.edu/fastx_toolkit/). We then 

proceeded to use Bowtie2 to map reads first to synthetic spikes, and then to the UniVec 

laboratory contaminant database (http://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/) and 

ribosomal RNAs from the GENCODE v19 annotation (Harrow et al., 2012). These two 

categories of sequences that are not expected to produce reads in our miRNA libraries, 

except by contamination or RNA degradation. The remaining unmapped reads were then 
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mapped using sRNAbench, first to the miRBase miRNA 21 annotation (Kozomara and 

Griffiths-Jones, 2013), and then to the entire human genome (hg19). Input reads under 19-nt 

or with greater than one mismatch were removed from all analyses of miRNA and spike 

quantifications.

To perform differential expression analysis between smRNA RATE-Seq time points, we 

used the edgeR package (version 3.2.4; Robinson et al., 2010; Robinson and Smyth, 2007). 

Specifically, we compared three early time points (both 20 min replicates and a deeply 

sequenced 1 hr time point) to three late time points (two 6 day replicates and a 22 day 

sample). miRNA read counts and dispersions were fit to a negative binomial distribution, 

and differential expression was evaluated using the negative binomial exact test. To correct 

for multiple hypothesis testing, we used the Bonferroni correction, and set a family-wise 

error rate of 0.005 to select differentially expressed miRNAs between early time points and 

the steady state.

Mass spectrometry of s4U disulfide exchange

Reactions (50 μL) contained s4U (50 μM), buffer (20 mM HEPES [pH 7.5], 1 mM EDTA), 

and MTS- or HPDP-biotin (5 mM) dissolved in DMF (final concentration of DMF = 5%). 

Aliquots were taken at designated time points and analyzed on an Agilent 6650A Q-TOF 

using a reverse phase column (Thermo Scientific Hypersil GOLD 3 μm, 160 x 2.1 mm) 

detected by electrospray ionization (positive ion mode). Chromatography conditions were 

established based on Sun et al. 2014. Briefly, analysis was initiated with an isocratic 

gradient of 100% buffer A at 0.4 mL/min for 6 min followed by a linear gradient of 0–50% 

buffer B over 6 min, 50–75% buffer B over 2 min, then an isocratic elution at 75% buffer B 

(buffer A: H2O in 0.1% (vol/vol) formic acid; buffer B: acetonitrile in 0.1% (vol/vol) formic 

acid).

NMR of s4U disulfide exchange

Reactions (600 μL) were preformed in D2O containing 10 mM HEPES, s4U (1 mg, 6.4 mM) 

and five equivalents of MeMTS or PDPH dissolved in DMF-δ7 (60 μL, 10% total volume). 

These reactions were incubated in the dark 2 hr for PDPH and 30 min for MeMTS. 

Reactions were analyzed on an Agilent DD2 400 MHz NMR with 16 scans.

Enrichment of singly thiolated RNA

Two fluorescently labeled RNAs were synthesized for s4U enrichment: non-s4U 39-nt RNA 

(DY647 - GGAACCGCCCGGAUAGUGUCCUUGGGAAACCAAGUCCGGGCACCA) 

and one s4U 39-nt RNA (DY547 - 

GGAACCGCCCGGA(s4U)AGUGUCCUUGGGAAACCAAGUCCGGGCACCA) 

(Dharmacon). Biotinylation reactions (50 μL total) contained RNA (1 μM), 10 mM HEPES 

[pH 7.5], 1 mM EDTA, and 25 μM MTS- or HPDP-biotin (dissolved in DMF at 250 μM). 

Reactions were incubated at room temperature in the dark for 30 min or 2 hr, respectively. 

Following biotinylation, excess biotinylation reagenets were removed with two consecutive 

chloroform washes, followed by purification with a nucleotide cleanup kit (Qiagen) 

according to the manufacturer’s instructions. Biotinylated RNA was separated from non-

labeled RNA using Dynabeads MyOne Streptavidin C1 beads (Invitrogen). Biotinylated 

Duffy et al. Page 10

Mol Cell. Author manuscript; available in PMC 2016 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RNA was incubated with 50 μL Dynabeads with rotation for 1 hr at room temperature in the 

dark. Beads were magnetically fixed and washed twice with Dynabeads high salt wash 

buffer. s4U-RNA was eluted with 100 μL of elution buffer (10 mM Tris [pH 7.4] and 100 

mM DTT). Fractions were concentrated by ethanol precipitation, separated on a 12% urea-

PAGE gel, and visualized by Typhoon fluorescence imager (GE).

Enrichment of an in vitro transcribed RNA ladder

An RNA ladder of 100–1000 nt was transcribed in vitro using the RNA Century Plus 

Marker Template and Maxiscript T7 transcription kit (Invitrogen) using Cy5-CTP at a ratio 

of 1:1 Cy5-CTP:CTP for downstream visualization, with the option of adding s4UTP 

(TriLink Biotechnologies) at a ratio of s4UTP:UTP to the reaction. After the reaction, excess 

nucleotides were removed by an Illustra Microspin G-25 column (GE Healthcare Life 

Sciences) according to the manufacturer’s instructions. RNA ladders were reacted with 

HPDP-, MTS- or thiolsulfonate-biotin (Biotium), following the protocol described above. 

Enriched samples were separated on a 5% urea-PAGE gel, stained with GelGreen and 

visualized by Typhoon fluorescence imager (GE).

Enrichment of thiolated tRNA from E. coli

E. coli WT and ΔthiI cultures were grown to mid-log phase in LB media. Strains were a 

generous gift from Eugene Mueller (Mueller et al., 1998). Cells were pelleted at 3,250 x g 

for 10 min at 4°C. Total RNA was purified by the mirVana miRNA isolation kit (Life 

Technologies). RNA pulldowns were performed as above (Purification of s4U-labeled RNA) 

and fractions separated on a 5% urea-PAGE gel, followed by visualization with GelGreen 

stain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Current methods to track s4U-RNA are inefficient, giving low yields and high 

bias.

• MTS-chemistry efficiently labels s4U-RNA, which improves methods that rely 

on s4U.

• Increased sensitivity provides greater insight into RNA dynamics and miRNA 

turnover.
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Figure 1. Efficient formation of disulfides with s4U via MTS chemistry
(A) s4U disulfide exchange with HPDP-biotin. (B) LC-MS extracted ion chromatograms of 

s4U (red) and biotin-s4U (blue) for HPDP-biotin at the indicated reaction times. (C) s4U 

disulfide exchange with MTS-biotin. (D) LC-MS chromatograms as in (B). (E) 

Downfield 1H NMR spectra of (top) s4U alone, (center) s4U reacted with 3-[2-

Pyridyldithio]propionyl hydrazide (PDPH), an HPDP-like disulfide, and (bottom) methyl-

MTS. Peaks for the starting material (red shading) and products (blue shading) were 

integrated and normalized to sum of the anomeric protons of s4U and its products (5.9 ppm). 

For full spectra, see Figure S1A–C. (F, G) Enrichment of a singly-thiolated 39-nt RNA by 

(F) HPDP-biotin or (G) MTS-biotin. Fluorescently labeled 39-nt RNAs with or without a 

single s4U were biotinylated with the indicated reagent and enriched on streptavidin beads, 

followed by urea-PAGE and fluorescence imaging. See also Figure S1.
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Figure 2. MTS-biotin affords higher specific yields and lower length bias of s4U-RNA
(A) Schematic of s4U metabolic labeling. 293T cells were treated with s4U (700 μM) for one 

hour, followed by total RNA extraction, biotinylation with either HPDP- or MTS-biotin, and 

enrichment on streptavidin-coated magnetic resin. (B) Total reads for each RNA-Seq sample 

that mapped to the H. sapiens genome, divided by total number of reads that mapped to the 

S. pombe genome. (C) Whole genome alignments of eluted samples from HPDP- or MTS-

biotin enrichments. y-axis indicates number of reads normalized by S. pombe spike-ins (see 

Materials and Methods). Forward and reverse strand reads are represented as positive and 

negative values on the y-axis respectively. To compare coverage between samples on the 

same y-axis scale, in some cases, read coverage exceeds the y-axis upper limit in MTS-

biotin (127 cases) and HPDP-biotin (4 cases). Chromosomes are indicated below the 

mapped reads. (D) Box plot of transcripts recovered by MTS-biotin and HPDP-biotin binned 

by transcript length. Blue = MTS-biotin, purple = HPDP-biotin. (E) Examples of genes 
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enriched by HPDP- and MTS-biotin, along with a no s4U-feed control. MALAT1 (8.7 kb), 

SCYL1 (2.3 kb cDNA) and LTBP3 (3.4 kb cDNA) gene architectures displayed below. See 

also Figure S2, Table S1.
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Figure 3. MTS chemistry reveals fast- and slow-turnover miRNAs in miRNA RATE-seq 
experiments
(A) Schematic of s4U treatments used in miRNA RATE-seq. (B) Cartoon of anticipated 

behavior of fast-turnover and slow-turnover miRNAs in comparison to average. Fast-

turnover miRNAs are expected to be over-represented in the early time points whereas slow-

turnover miRNAs are depleted, relative to steady state (ss). (C) Heatmap depicting 

correlation coefficients (Pearson’s r) between miRNA levels at different times after s4U 

treatment. Replicate samples are indicated by (rep). (D) Volcano plot depicting results from 

a comparative analysis of miRNAs that are significantly enriched or depleted in early time 

points (20 min, 1 hr) relative to steady state levels (6 and 22 days). Fast-turnover miRNAs 

(fold difference early time points from steady state > 4; p-value < 2x10−5; Bonferroni 

family-wise error rate < 0.005) are colored red; slow-turnover miRNAs (fold difference 

early time points from steady state < 0.25; p-value < 2x10−5; Bonferroni family-wise error 

rate < 0.005) are shown in blue. Stars indicate miRNAs defined as miRNA-stars (see 

Experimental Procedures); the others are indicated with circles. (E) Heatmap indicating 

normalized miRNA enrichment relative to steady state level at each time point in RATE-seq 

for the fast- and slow-turnover miRNAs in (C). For clarity of presentation, the most 

significant fast-turnover miRNA in this analysis (miR-4521, log2(fold-change) = 10.8; p-

value = 2.9x10−40) has been omitted from (C) and (D) due to values exceeding the indicated 

scales. See also Figure S5 and Table S2.
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